343

CRISPR/Cas and Its Potentiality as an Effective Tool

Liu, F., Huang, N., Wang, L., Ling, H., Sun, T., Ahmad, W., et al., (2017). A novel L-ascorbate

peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to

biotic and abiotic stresses in sugarcane. Frontiers in Plant Science, 8, 2262. doi: 10.3389/

fpls.2017.02262.

Lobell, D. B., & Gourdji, S. M., (2012). The influence of climate change on global crop

productivity. Plant Physiol., 160(4), 1686–1697. https://doi.org/10.1104/pp.112.20829 8.

Lou, D., Wang, H., Liang, G., & Yu, D., (2017). OsSAPK2 confers abscisic acid sensitivity

and tolerance to drought stress in rice. Front Plant Sci., 8, 993.

Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D., et

al., (2015). COLD1 confers chilling tolerance in rice. Cell, 160(6), 1209–1221. 10.1016/j.

cell.2015.01.046.

Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., ˇCermák, T., Voytas,

D. F., et al., (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted

mutagenesis confer resistance to rice tungro spherical virus. Plant Biotechnol. J., 16,

918–1927.

Makarova, K. S., Wolf, Y. I., & Koonin, E. V., (2013). The basic building blocks and

evolution of CRISPR–Cas systems. Biochem. Soc. Trans., 41, 1392–1400. doi: 10.1042/

BST20130038.

Makarova, K. S., Wolf, Y. I., & Koonin, E. V., (2018). Classification and nomenclature

of CRISPR-Cas systems: Where from here? CRISPR J., 1, 325–336. doi: 10.1089/

crispr.2018.0033.

Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns, S. J.

J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., et al., (2020). Evolutionary

classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev.

Microbiol., 18, 67–83. https://doi.org/10.1038/s41579-019-0299-x.

Makarova, K., Wolf, Y., Alkhnbashi, O., et al., (2015). An updated evolutionary classification

of CRISPR–Cas systems. Nat. Rev. Microbiol., 13, 722–736 https://doi.org/10.1038/

nrmicro3569.

Malnoy, M., Viola, R., Jung, M. H., Koo, O. J., Kim, S., Kim, J. S., Velasco, R., & Nagamangala,

K. C., (2016). DNA-free genetically edited grapevine and apple protoplast using CRISPR/

Cas9 ribonucleoproteins. Front. Plant Sci., 7, 1904.

Maron, L. G., Guimarães, C. T., Kirst, M., Albert, P. S., Birchler, J. A., Bradbury, P. J., Buckler,

E. S., Coluccio, A. E., Danilova, T. V., Kudrna, D., Magalhaes, J. V., et al., (2013). Aluminum

tolerance in maize is associated with higher MATE1 gene copy number. Proceedings of the

National Academy of Sciences, 110(13), 5241–5246. doi: 10.1073/pnas.1220766110.

Marraffini, L. A., & Sontheimer, E. J., (2010). CRISPR interference: RNA-directed adaptive

immunity in bacteria and archaea. Nat. Rev. Genet., 11, 181–190. https://doi.org/10.1038/

nrg27 49.

Meng, X., Hu, X., Liu, Q., Song, X., Gao, C., Li, J., et al., (2018). Robust genome editing

of CRISPR-Cas9 at NAG PAMs in rice. Sci. China Life Sci., 61, 122–125. https: //doi.

org/10.1007/s1142 7-017-9247-9.

Miao, H., Sun, P., Liu, Q., Miao, Y., Liu, J., Xu, B., et al., (2017b). The AGPase family proteins

in banana: Genome wide identification, phylogeny, and expression analyses reveal their

involvement in the development, ripening, and abiotic/biotic stress responses. International

Journal Molecular Science, 18(8), 1581. doi: 10.3390/ijms18081581.